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Olympiad Corner 
 
Following are the problems of 2005 
Chinese Mathematical Olympiad.   

 
Problem 1.    Let )2/,2/( ππθ −∈i , 
i = 1, 2, 3, 4.  Prove that there exists 
x∈ℝ satisfying the two inequalities 
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Problem 2.  A circle meets the three 
sides BC, CA, AB of triangle ABC at 
points D1, D2; E1, E2 and F1, F2 in turn.  
The line segments D1E1 and D2F2 
intersect at point L, line segments E1F1 
and E2D2 intersect at point M, line 
segments F1D1 and F2E2 intersect at 
point N.  Prove that the three lines AL, 
BM and CN are concurrent. 
 
Problem 3.  As in the figure, a pond is 
divided into 2n (n ≥ 5) parts.  Two parts 
are called neighbors if they have a 
common side or arc.  Thus every part has  
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, 
Department of Mathematics, The Hong 
Kong University of Science & 
Technology, Clear Water Bay, Kowloon, 
Hong Kong.  The deadline for 
submitting solutions is August 10, 
2005. 
 
Problem 226.  Let z1, z2, …, zn be 
complex numbers satisfying  
 

|z1| + |z2| + ⋯ + |zn| = 1. 
 
Prove that there is a nonempty subset 
of {z1, z2, …, zn} the sum of whose 
elements has modulus at least 1/4.
 
Problem 227.  For every integer n ≥ 6, 
prove that  
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Problem 228.  In ABC, M is the foot 
of the perpendicular from A to the 
angle bisector of BCA.  N and L are 
respectively the feet of perpendiculars 
from A and C to the bisector of ABC.  
Let F be the intersection of lines MN 
and AC.  Let E be the intersection of 
lines BF and CL.  Let D be the 
intersection of lines BL and AC.  
 
Prove that lines DE and MN are 
parallel.  
 
Problem 229.  For integer n ≥ 2, let a1, 
a2, a3, a4 be integers satisfying the 
following two conditions: 
 
(1) for i = 1, 2, 3, 4, the greatest 
common divisor of n and ai is 1 and 
(2) for every k = 1, 2, …, n – 1, we have 
 

(ka1)n + (ka2)n + (ka3)n + (ka4)n = 2n, 
 
where (a)n denotes the remainder when 
a is divided by n. 
 
Prove that (a1)n, (a2)n, (a3)n, (a4)n can be 
divided into two pairs, each pair having 
sum equals n. 
(Source: 1992 Japanese Math 
Olympiad)  
 
Problem 230.  Let k be a positive 
integer.  On the two sides of a river, 
there are in total at least 3 cities.  From 
each of these cities, there are exactly k 

routes, each connecting the city to a 
distinct city on the other side of the river.  
Via these routes, people in every city can 
reach any one of the other cities.  
 
Prove that if any one route is removed, 
people in every city can still reach any one 
of the other cities via the remaining 
routes. 
(Source: 1996 Iranian Math Olympiad, 
Round 2)  
 
 

***************** 
Solutions 

**************** 
 
Due to an editorial mistake in the last 
issue, solutions to problems 216, 217, 218, 
219 by D. Kipp Johnson (teacher, Valley 
Catholic School, Beaverton, Oregon, 
USA) were overlooked and his name was 
not listed among the solvers.  We express 
our apology to him. 
 
Problem 221.  (Due to Alfred Eckstein, 
Arad, Romania)  The Fibonacci sequence 
is defined by F0 = 1, F1 = 1 and Fn = Fn−1 + 
Fn−2 for n ≥ 2.  
 
Prove that  is 

divisible by F

333
27 ++ −− nnn FFF 1

38 nF +

n+3. 
 
Solution.  HUDREA Mihail (High 
School “Tiberiu Popoviciu” Cluj-Napoca 
Romania) and Kin-Chit O (STFA Cheng 
Yu Tung Secondary School).  
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Other commended solvers: CHAN Pak 
Woon (Wah Yan College, Kowloon, Form 
7), CHAN Tsz Lung, CHAN Yee Ling 
(Carmel Divine Grace Foundation Secondary 
School, Form 6), G.R.A. 20 Math Problem 
Group (Roma, Italy), MA Hoi Sang (Shun 
Lee Catholic Secondary School, Form 5), 
Anna Ying PUN (STFA Leung Kau Kui 
College, Form 6), WONG Kwok Cheung 
(Carmel Alison Lam Foundation Secondary 
School, Form 6) and WONG Kwok Kit 
(Carmel Divine Grace Foundation Secondary 
School, Form 6).  
 
Problem 222.  All vertices of a convex 
quadrilateral ABCD lie on a circle ω.  The 
rays AD, BC intersect in point K and the 
rays AB, DC intersect in point L.  

Prove that the circumcircle of triangle 
AKL is tangent to ω if and only if the 
circumcircle of triangle CKL is tangent 
to ω. 
(Source: 2001-2002 Estonian Math 
Olympiad, Final Round) 
 
Solution.  LEE Kai Seng (HKUST) and 
MA Hoi Sang (Shun Lee Catholic 
Secondary School, Form 5). 
 
Let ω1 and ω2 be the circumcircles of 
∆AKL and ∆CKL respectively.  For a 
point P on a circle Ω, let Ω(P) denote 
the tangent line to Ω at P.  
 
Pick D’ on ω(A) so that D and D’ are 
on opposite sides of line BL and pick L’ 
on ω1(A) so that L and L’ are on 
opposite sides of line BL.  
 
Next, pick D” on ω(C) so that D and 
D” are on opposite sides of line BK and 
pick L” on ω2(C) so that L and L” are 
on opposite sides of line BK.  Now ω, 
ω1 both contain A and ω, ω2 both 
contain C.  So 
   
                ω(A) =  ω1(A)  
          ⇔  ∠D’AB = ∠L’AB  
          ⇔  ∠ADB = ∠ALB  
          ⇔   BD ║ LK   
          ⇔  ∠BDC = ∠KLC  
          ⇔  ∠BCD” = ∠KCL”  
          ⇔  ω(C) = ω2(C).  
 
Other commended solvers: CHAN Tsz 
Lung and Anna Ying PUN (STFA 
Leung Kau Kui College, Form 6). 
 
Problem 223.  Let n ≥ 3 be an integer 
and x be a real number such that the 
numbers x, x2 and xn have the same 
fractional parts.  Prove that x is an 
integer.  
(Source: 1997 Romanian Math 
Olympiad, Final Round) 
 
Solution. G.R.A. 20 Math Problem 
Group (Roma, Italy). 
 
By hypotheses, there are integers a, b 
such that x2 = x + a and xn = x + b.  Since 
x is real, the discriminant  = 1 + 4a of 
x2 − x − a = 0 is nonnegative.  So a ≥ 0.  
If a = 0, then x = 0 or 1.  
 
If a > 0, then define integers cj, dj so that 
xj = cjx + dj for j ≥ 2 by c2 = 1, d2 = a > 0, 
 

x3
 = x2

 + ax = (1 + a)x + a 
 
leads to c3 = 1 + a, d3 = a and for j > 3, xj 

= (x + a)xj−2 = (cj−1 + acj−2)x + (dj−1 + 
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adj−2) leads to cj = cj−1 + acj−2 > cj−1 > 1 
and dj = dj−1 + adj−2.  
 
Now cnx + dn = xn

  = x + b with cn > 1 

implies x = (b − dn)/(cn − 1) is rational.  
This along with a being an integer and x2 

− x − a = 0 imply x is an integer.  
 
Other commended solvers: CHAN Tsz 
Lung, MA Hoi Sang (Shun Lee 
Catholic Secondary School, Form 5), 
and Anna Ying PUN (STFA Leung Kau 
Kui College, Form 6). 
 
Problem 224.  (Due to Abderrahim 
Ouardini)  Let a, b, c be the sides of 
triangle ABC and I be the incenter of 
the triangle.  
   
Prove that  

33
abcICIBIA ≤⋅⋅  

and determine when equality occurs. 
 
Solution. CHAN Tsz Lung and 
Kin-Chit O (STFA Cheng Yu Tung 
Secondary School).   
 

I

B C

A

P

Q

R

 
Let r be the radius of the incircle and s 
be the semiperimeter (a + b + c)/2.  The 
area of ABC is (a + b + c)r/2 =sr and  

))()(( csbsass −−−  by Heron’s 
formula.  So  
 
            r2 = (s-a)(s-b)(s-c)/s.             (*)  
 
Let P, Q, R be the feet of perpendiculars 
from I to AB, BC, CA.  Now s = AP + 
BQ + CR = AP + BC, so AP = s-a.  
Similarly, BQ = s-b and CR = s-c.  By 
the AM-GM inequality,  
 
      s/3 = [(s−a)+(s−b)+(s−c)]/3 
           3 ).)()(( csbsas −−−≥        (**) 
 
Using Pythagoras’ theorem, (*) and (**), 
we have  
   
     IA2·IB2·IC2

  = [r2+(s−a)2][r2+(s−b)2][r2+(s−c)2] 
  = [(s−a)bc/s][(s−b)ca/s][(s−c)ab/s] 
  ≤ (abc)2/33

with equality if and only if a = b = c.  The 
result follows. 
 
Other commended solvers: HUDREA 
Mihail (High School “Tiberiu Popoviciu” 
Cluj-Napoca Romania), KWOK Lo Yan 
(Carmel Divine Grace Foundation Secondary 
School, Form 5), MA Hoi Sang (Shun Lee 
Catholic Secondary School, Form 5) and 
Anna Ying PUN (STFA Leung Kau Kui 
College, Form 6). 
 
Problem 225.  A luminous point is in 
space.  Is it possible to prevent its 
luminosity with a finite number of disjoint 
spheres of the same size? 
(Source: 2003-2004 Iranian Math 
Olympiad, Second Round) 
 
Official Solution.  
 

Let the luminous point be at the origin. 
Consider all spheres of radius r = 4/2  
centered at (i, j, k), where i, j, k are integers 
(not all zero) and |i|, |j|, |k| ≤ 64.  The 
spheres are disjoint as the radii are less 
than 1/2.  For any line L through the origin, 
by the symmetries of the spheres, we may 
assume L has equations of the form y = ax 
and z = bx with |a|, |b| ≤ 1.  It suffices to 
show L intersects one of the spheres. 

  
We claim that for every positive integer n 
and every real number c with |c| ≤ 1, there 
exists a positive integer m ≤ n such that 
|{mc}| < 1/n, where {x} = x – [x] is the 
fractional part of x.  
 
To see this, partition [0,1) into n intervals 
of length 1/n.  If one of {c}, {2c}, …, {nc} 
is in [0,1/n), then the claim is true.  
Otherwise, by the pigeonhole principle, 
there are 0 < m’ < m” ≤ n such that {m’c} 
and {m”c} are in the same interval.  Then 
|{m’c}–{m”c}| < 1/n implies |{mc}| < 1/n 
for m = m” – m’ ≤ n. 
 
Since |a| ≤ 1, by the claim, there is a 
positive integer m ≤ 16 such that |{ma}| < 
1/16 and there is a positive integer n ≤ 4 
such that |{nmb}| < 1/4.  Now |{ma}| < 
1/16 and n ≤ 4 imply |{nma}| < 1/4.  Then 
i = nm ≤ 64 and j = [nma], k = [nmb] 
satisfy |j–nma| < 1/4 and |k–nmb| < 1/4.  
So the distance between the point (i, ia, ib) 
on L and the center (i, j, k) is less than r.  
Therefore, every line L through the origin 
will intersect some sphere. 
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three neighbors.  Now there are 4n + 1 
frogs at the pond.  If there are three or 
more frogs at one part, then three of the 
frogs of the part will jump to the three 
neighbors respectively.  
 
Prove that at some time later, the frogs 
at the pond will be uniformly 
distributed.  That is, for any part, either 
there is at least one frog at the part or 
there is at least one frog at each of its 
neighbors. 
 

 

            
Problem 4.  Given a sequence {an} 
satisfying a1 = 21/16 and 2an- 3an-1 = 
3/2n+1, n ≥ 2.  Let m be a positive 
integer, m ≥ 2.  
 
Prove that if n ≤ m, then  
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Problem 5.  Inside and including the 
boundary of a rectangle ABCD with 
area 1, there are 5 points, no three of 
which are collinear.  
 
Find (with proof) the least possible 
number of triangles having vertices 
among these 5 points with areas not 
greater than 1/4. 
 
Problem 6.  Find (with proof) all 
nonnegative integral solutions (x, y, z, 
w) to the equation 
 

2x · 3y -5z · 7w = 1. 
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