Mathematical Excalibur

Olympiad Corner

British Mathematical Olympiad， January 2000：

Time allowed： 3 hours 30 minutes

Problem 1．Two intersecting circles C_{1} and C_{2} have a common tangent which touches C_{1} at P and C_{2} at Q ．The two circles intersect at M and N ，where N is nearer to $P Q$ than M is．The line $P N$ meets the circle C_{2} again at R ．Prove that $M Q$ bisects angle $P M R$ ．

Problem 2．Show that for every positive integer n ，

$$
121^{n}-25^{n}+1900^{n}-(-4)^{n}
$$

is divisible by 2000 ．
Problem 3．Triangle $A B C$ has a right angle at A ．Among all points P on the perimeter of the triangle，find the position of P such that

$$
A P+B P+C P
$$

is minimized．
Problem 4．For each positive integer k ， define the sequence $\left\{a_{n}\right\}$ by

$$
a_{0}=1 \quad \text { and } a_{\mathrm{n}}=k n+(-1)^{n} a_{\mathrm{n}-1}
$$

for each $n \geq 1$ ．
（continued on page 4）
Editors：張百康（CHEUNG Pak－Hong），Munsang College，HK高子眉（KO Tsz－Mei）
梁 達 榮（LEUNG Tat－Wing），Appl．Math Dept，HKPU
李 健 賢（LI Kin－Yin），Math Dept，HKUST
吴 鏡 波（NG Keng－Po Roger），ITC，HKPU
Artist：楊 秀 英（YEUNG Sau－Ying Camille），MFA，CU
Acknowledgment：Thanks to Elina Chiu，MATH Dept， HKUST for general assistance．

On－line：http：／／www．math．ust．hk／mathematical＿excalibur／
The editors welcome contributions from all teachers and students．With your submission，please include your name， address，school，email，telephone and fax numbers（if available）．Electronic submissions，especially in MS Word， are encouraged．The deadline for receiving material for the next issue is February 4， 2001.

For individual subscription for the next five issues for the 01－02 academic year，send us five stamped self－addressed envelopes．Send all correspondence to：

> Dr. Kin-Yin Li

Department of Mathematics
Hong Kong University of Science and Technology Clear Water Bay，Kowloon，Hong Kong

五點求圆錐曲線

梁子傑
香港道教聯合會青松中學

我們知道，圆錐曲線是一些所謂二次形的曲線，即一條圓錐曲線會滿足以下的一般二次方程：$A x^{2}+B x y+C y^{2}$ $+D x+E y+F=0$ ，其中 $A, ~ B$ 及 C 不會同時等於 0 。假設 $A \neq 0$ ，那麼我們可以將上式除以 A ，並化簡成以下模式：

$$
x^{2}+b x y+c y^{2}+d x+e y+f=0 \text { 。 }
$$

以上的方程給了我們一個啟示：就是五點能夠定出一個圓錐曲線。 因為如果我們知道了五個不同點的坐標，我們可以將它們分別代入上面的方程中，從而得到一個有 5 個未知數（即 b ， $c, ~ d, ~ e$ 和 f ）和 5 條方程的方程組。祇要解出各未知數的答案，就可以知道該圆錐曲線的方程了。

不過，上述方法雖然明顯，但真正操作時又困難重重！這是由於有 5 個未知數的聯立方程卻不易解！而且我們在計算之初假設 x^{2} 的係數非零，但萬一這假設不成立，我們就要改設 B或 C 非零，並需要重新計算一次了。

幸好，我們可以通過「圓錐曲線族」的想法來解此問題。方法見下例：

例：求穿過 $A(1,0), B(3,1), C(0,3)$ ， $D(-4,-1), E(-2,-3)$ 五點的圓錐曲線方程。

解：利用兩點式，先求出以下各直線的方程：
$A B: \frac{y-0}{x-1}=\frac{1-0}{3-1}$ ，即 $x-2 y-1=0$
$C D: \frac{y-3}{x-0}=\frac{-1-3}{-4-0}$ ，即 $x-y+3=0$
$A C: \frac{y-0}{x-1}=\frac{3-0}{0-1}$ ，即 $3 x+y-3=0$
$B D: \frac{y-1}{x-3}=\frac{-1-1}{-4-3}$ ，即 $2 x-7 y+1=0$

然後將 $A B$ 和 $C D$ 的方程「相乘」，得一條圓錐曲線的方程：
$(x-2 y-1)(x-y+3)=0$ ，即 $x^{2}-3 x y+$ $2 y^{2}+2 x-5 y-3=0$ 。

注意：雖然上述的方程是一條二次形「曲線」，但實際上它是由雨條直線所組成的。同時，亦請大家留意，該曲線同時穿過 $A, ~ B, ~ C$ 和 D 四點。

類似地，我們又將 $A C$ 和 $B D$ 「相乘」，得：
$(3 x+y-3)(2 x-7 y+1)=0$ ，即 $6 x^{2}-19 x y$ $-7 y^{2}-3 x+22 y-3=0$ 。

考慮圓錐曲線族：
$x^{2}-3 x y+2 y^{2}+2 x-5 y-3+k\left(6 x^{2}-19 x y\right.$ $\left.-7 y^{2}-3 x+22 y-3\right)=0$ 。很明顯，無論 k 取任何數值，這圓錐曲線族都會同様穿過 $A, ~ B, ~ C$ 和 D 四點。

最後，將 E 點的坐標代入曲線族中，得： $12+k(-216)=0$ ，即 $k=1 / 18$ ，由此得所求的圓錐曲線方程為
$18\left(x^{2}-3 x y+2 y^{2}+2 x-5 y-3\right)+\left(6 x^{2}-\right.$ $\left.19 x y-7 y^{2}-3 x+22 y-3\right)=0$ ，即
$24 x^{2}-73 x y+29 y^{2}+33 x-68 y-57=0$ 。

Majorization Inequality

Kin Y. Li

The majorization inequality is a generalization of Jensen's inequality. While Jensen's inequality provides one extremum (either maximum or minimum) to a convex (or concave) expression, the majorization inequality can provide both in some cases as the examples below will show. In order to state this inequality, we first introduce the concept of majorization for ordered set of numbers. If

$$
\begin{gathered}
x_{1} \geq x_{2} \geq \cdots \geq x_{n} \\
y_{1} \geq y_{2} \geq \cdots \geq y_{n} \\
x_{1} \geq y_{1}, \quad x_{1}+x_{2} \geq y_{1}+y_{2}, \quad \cdots, \\
x_{1}+\cdots+x_{n-1} \geq y_{1}+\cdots+y_{n-1}
\end{gathered}
$$

and

$$
x_{1}+\cdots+x_{n}=y_{1}+\cdots+y_{n}
$$

then we say $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ majorizes $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ and write

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \succ\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

Now we are ready to state the inequality.
Majorization Inequality. If the function f is convex on the interval $I=[a, b]$ and

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \succ\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

for $x_{i}, y_{i} \in I$, then

$$
\begin{gathered}
f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right) \\
\geq f\left(y_{1}\right)+f\left(y_{2}\right)+\cdots+f\left(y_{n}\right) .
\end{gathered}
$$

For strictly convex functions, equality holds if and only if $x_{i}=y_{i}$ for $i=1,2, \ldots$, n. The statements for concave functions can be obtained by reversing inequality signs.

Next we will show that the majorization inequality implies Jensen's inequality. This follows from the observation that if $x_{1} \geq x_{2} \geq \cdots \geq x_{n}$, then $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \succ$ (x, x, \ldots, x), where x is the arithmetic mean of $x_{1}, x_{2}, \ldots, x_{n}$. (Thus, applying the majorization inequality, we get Jensen's inequality.) For $k=1,2, \ldots, n-1$, we have to show $x_{1}+\cdots+x_{k} \geq k x$. Since

$$
\begin{aligned}
& (n-k)\left(x_{1}+\cdots+x_{k}\right) \\
\geq & (n-k) k x_{k} \geq k(n-k) x_{k+1} \\
\geq & k\left(x_{k+1}+\cdots x_{n}\right) .
\end{aligned}
$$

Adding $k\left(x_{1}+\cdots+x_{k}\right)$ to the two extremes, we get
$n\left(x_{1}+\cdots+x_{k}\right) \geq k\left(x_{1}+\cdots+x_{n}\right)=k n x$.

Therefore, $x_{1}+\cdots+x_{k} \geq k x$.
Example 1. For acute triangle ABC , show that

$$
1 \leq \cos A+\cos B+\cos C \leq \frac{3}{2}
$$

and determine when equality holds.
Solution. Without loss of generality, assume $A \geq B \geq C$. Then $A \geq \pi / 3$ and $C \leq \pi / 3$. Since $\pi / 2 \geq A \geq \pi / 3$ and

$$
\pi \geq A+B(=\pi-C) \geq 2 \pi / 3
$$

we have $(\pi / 2, \pi / 2,0) \succ(A, B, C) \succ$ $(\pi / 3, \pi / 3, \pi / 3)$. Since $f(x)=\cos x$ is strictly concave on $I=[0, \pi / 2]$, by the majorization inequality,

$$
\begin{aligned}
1 & =f\left(\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)+f(0) \\
& \leq f(A)+f(B)+f(C) \\
& =\cos A+\cos B+\cos C \\
& \leq f\left(\frac{\pi}{3}\right)+f\left(\frac{\pi}{3}\right)+f\left(\frac{\pi}{3}\right)=\frac{3}{2} .
\end{aligned}
$$

For the first inequality, equality cannot hold (as two of the angles cannot both be right angles). For the second inequality, equality holds if and only if the triangle is equilateral.

Remarks. This example illustrates the equilateral triangles and the degenerate case of two right angles are extreme cases for convex (or concave) sums.

Example 2. Prove that if $a, b \geq 0$, then $\sqrt[3]{a+\sqrt[3]{a}}+\sqrt[3]{b+\sqrt[3]{b}} \leq \sqrt[3]{a+\sqrt[3]{b}}+\sqrt[3]{b+\sqrt[3]{a}}$. (Source: Math Horizons, Nov. 1995, Problem 36 of Problem Section, proposed by E.M. Kaye)

Solution. Without loss of generality, we may assume $b \geq a \geq 0$. Among the numbers

$$
\begin{array}{ll}
x_{1}=b+\sqrt[3]{b}, & x_{2}=b+\sqrt[3]{a} \\
x_{3}=a+\sqrt[3]{b}, & x_{4}=a+\sqrt[3]{a}
\end{array}
$$

x_{1} is the maximum and x_{4} is the minimum. Since $x_{1}+x_{4}=x_{2}+x_{3}$, we get $\left(x_{1}, x_{4}\right) \succ\left(x_{2}, x_{3}\right)$ or $\left(x_{3}, x_{2}\right)$ (depends on which of x_{2} or x_{3} is larger). Since $f(x)=\sqrt[3]{x}$ is concave on the interval $[0, \infty)$, so by the majorization inequality,

$$
f\left(x_{4}\right)+f\left(x_{1}\right) \leq f\left(x_{3}\right)+f\left(x_{2}\right),
$$

which is the desired inequality.

Example 3. Find the maximum of $a^{12}+$ $b^{12}+c^{12}$ if $-1 \leq a, b, c \leq 1$ and $a+b+c$ $=-1 / 2$.

Solution. Note the continuous function $f(x)=x^{12}$ is convex on $[-1,1]$ since $f^{\prime \prime}(x)=132 x^{10} \geq 0$ on $(-1,1)$. If $1 \geq a$ $\geq b \geq c \geq-1$ and

$$
a+b+c=-\frac{1}{2}
$$

then we get $(1,-1 / 2,-1) \succ(a, b, c)$. This is because $1 \geq a$ and

$$
\frac{1}{2}=1-\frac{1}{2} \geq-c-\frac{1}{2}=a+b
$$

So by the majorization inequality,

$$
\begin{aligned}
& a^{12}+b^{12}+c^{12} \\
= & f(a)+f(a)+f(c) \\
\leq & f(1)+f\left(-\frac{1}{2}\right)+f(-1) \\
= & 2+\frac{1}{2^{12}} .
\end{aligned}
$$

The maximum value $2+\left(1 / 2^{12}\right)$ is attained when $a=1, b=-1 / 2$ and $c=-1$.

Remarks. The example above is a simplification of a problem in the 1997 Chinese Mathematical Olympiad.

Example 4. (1999 IMO) Let n be a fixed integer, with $n \geq 2$.
(a) Determine the least constant C such that the inequality

$$
\sum_{1 \leq i<j \leq n} x_{i} x_{j}\left(x_{i}^{2}+x_{j}^{2}\right) \leq C\left(\sum_{1 \leq i \leq n} x_{i}\right)^{4}
$$

holds for all real numbers x_{1}, x_{2}, \ldots, $x_{n} \geq 0$.
(b) For this constant C, determine when equality holds.

Solution. Consider the case $n=2$ first. Let $x_{1}=m+h$ and $x_{2}=m-h$, then $m=$ $\left(x_{1}+x_{2}\right) / 2, h=\left(x_{1}-x_{2}\right) / 2$ and

$$
\begin{gathered}
x_{1} x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)=2\left(m^{4}-h^{4}\right) \\
\leq 2 m^{4}=\frac{1}{8}\left(x_{1}+x_{2}\right)^{4}
\end{gathered}
$$

with equality if and only if $h=0$, i.e. x_{1} $=x_{2}$.
(continued on page 4)

Problem Corner

We welcome readers to submit their solutions to the problems posed below for publication consideration. Solutions should be preceeded by the solver's name, home (or email) address and school affiliation. Please send submissions to Dr. Kin Y. Li, Department of Mathematics, Hong Kong University of Science \& Technology, Clear Water Bay, Kowloon. The deadline for submitting solutions is February 4, 2001.

Problem 116. Show that the interior of a convex quadrilateral with area A and perimeter P contains a circle of radius A/P.

Problem 117. The lengths of the sides of a quadrilateral are positive integers. The length of each side divides the sum of the other three lengths. Prove that two of the sides have the same length.

Problem 118. Let R be the real numbers. Find all functions $f: R \rightarrow R$ such that for all real numbers x and y,

$$
f(x f(y)+x)=x y+f(x)
$$

Problem 119. A circle with center O is internally tangent to two circles inside it at points S and T. Suppose the two circles inside intersect at M and N with N closer to $S T$. Show that $O M \perp M N$ if and only if S, N, T are collinear. (Source: 1997 Chinese Senior High Math Competitiion)

Problem 120. Twenty-eight integers are chosen from the interval [104, 208]. Show that there exist two of them having a common prime divisor.

Solutions

Problem 111. Is it possible to place 100 solid balls in space so that no two of them have a common interior point, and each of them touches at least one-third of the others? (Source: 1997 Czech-Slovak Match)

Solution 1. LEE Kai Seng (HKUST).

Take a smallest ball B with center at O and
radius r. Any other ball touching B at x contains a smaller ball of radius r also touching B at x. Since these smaller balls are contained in the ball with center O and radius $3 r$, which has a volume 27 times the volume of B, there are at most 26 of these other balls touching B.

Solution 2. LEUNG Wai Ying (Queen Elizabeth School, Form 6).

Consider a smallest ball S with center O and radius r. Let S_{i} and S_{j} (with centers O_{i} and O_{j} and radii r_{i} and r_{j}, respectively) be two other balls touching S at P_{i} and P_{j}, respectively. Since r_{i}, r_{j} $\geq \mathrm{r}$, we have $O_{i} O_{j} \geq r_{i}+r_{j} \geq r+r_{i}=$ $O O_{i}$ and similarly $O_{i} O_{j} \geq O O_{j}$. So $O_{i} O_{j}$ is the longest side of $\triangle O O_{i} O_{j}$.
Hence $\angle P_{i} O P_{j}=\angle O_{i} O O_{j} \geq 60^{\circ}$.
For ball S_{i}, consider the solid cone with vertex at O obtained by rotating a 30° angle about $O P_{i}$ as axis. Let A_{i} be the part of this cone on the surface of S. Since $\angle P_{i} O P_{j} \geq 60^{\circ}$, the interiors of A_{i} and A_{j} do not intersect. Since the surface area of each A_{i} is greater than $\pi\left(r \sin 30^{\circ}\right)^{2}=\pi r^{2} / 4$, which is $1 / 16$ of the surface area of S, S can touch at most 15 other balls. So the answer to the question is no.
Other recommended solvers: CHENG Kei Tsi (La Salle College, Form 6).

Problem 112. Find all positive integers (x, n) such that $x^{n}+2^{n}+1$ is a divisor of $x^{n+1}+2^{n+1}+1$. (Source: 1998 Romanian Math Olympiad)
Solution. CHENG Kei Tsi (La Salle College, Form 6), LEE Kevin (La Salle College, Form 5) and LEUNG Wai Ying (Queen Elizabeth School, Form 6).

For $x=1,2\left(1^{n}+2^{n}+1\right)>1^{n+1}+$ $2^{n+1}+1>1^{n}+2^{n}+1$. For $x=2$, $2\left(2^{n}+2^{n}+1\right)>2^{n+1}+2^{n+1}+1>$ $2^{n}+2^{n}+1$. For $x=3,3\left(3^{n}+2^{n}+1\right)$ $>3^{n+1}+2^{n+1}+1>2\left(3^{n}+2^{n}+1\right)$. So there are no solutions with $x=1,2,3$.

For $x \geq 4$, if $n \geq 2$, then we get $x\left(x^{n}+2^{n}+1\right)>x^{n+1}+2^{n+1}+1$. Now $x^{n+1}+2^{n+1}+1$

$$
\begin{aligned}
& =(x-1)\left(x^{n}+2^{n}+1\right) \\
& \quad+x^{n}-\left(2^{n}+1\right) x+3 \cdot 2^{n}+2 \\
& >(x-1)\left(x^{n}+2^{n}+1\right)
\end{aligned}
$$

because for $n=2, x^{n}-\left(2^{n}+1\right) x+$ $2^{n+1}=x^{2}-5 x+8>0$ and for $n \geq 3$, $x^{n}-\left(2^{n}+1\right) x \geq x\left(4^{n-1}-2^{n}-1\right)>0$. Hence only $n=1$ and $x \geq 4$ are possible. In that case, $x^{n}+2^{n}+1=x+3$ is a divisor of $x^{n+1}+2^{n+1}+1=x^{2}+5=(x-$ $3)(x+3)+14$ if and only if $x+3$ is a divisor of 14. Since $x+3 \geq 7, x=4$ or 11. So the solutions are $(x, y)=(4,1)$ and $(11,1)$.

Problem 113. Let $a, b, c>0$ and $a b c \leq 1$. Prove that

$$
\frac{a}{c}+\frac{b}{a}+\frac{c}{b} \geq a+b+c
$$

Solution. LEUNG Wai Ying (Queen Elizabeth School, Form 6).

Since $a b c \leq 1$, we get $1 /(b c) \geq a, 1 /(a c)$ $\geq b$ and $1 /(a b) \geq c$. By the AM-GM inequality,

$$
\frac{2 a}{c}+\frac{c}{b}=\frac{a}{c}+\frac{a}{c}+\frac{c}{b} \geq 3 \sqrt[3]{\frac{\mathrm{a}^{2}}{\mathrm{bc}}} \geq 3 a
$$

Similarly, $2 b / a+a / c \geq 3 b$ and $2 c / b+b / a$ $\geq 3 c$. Adding these and dividing by 3 , we get the desired inequality.
Alternatively, let $x=\sqrt[9]{a^{4} b / c^{2}}, y=$ $\sqrt[9]{c^{4} a / b^{2}}$ and $z=\sqrt[9]{b^{4} c / a^{2}}$. We have $a=x^{2} y, b=z^{2} x, c=y^{2} z$ and $x y z=$ $\sqrt[3]{a b c} \leq 1$. Using this and the re-arrangement inequality, we get

$$
\begin{aligned}
& \frac{a}{c}+\frac{b}{a}+\frac{c}{b}=\frac{x^{2}}{y z}+\frac{z^{2}}{x y}+\frac{y^{2}}{z x} \\
\geq & x y z\left(\frac{x^{2}}{y z}+\frac{z^{2}}{x y}+\frac{y^{2}}{z x}\right)=x^{3}+y^{3}+z^{3} \\
\geq & x^{2} y+y^{2} z+z^{2} x=a+b+c .
\end{aligned}
$$

Problem 114. (Proposed by Mohammed Aassila, Universite Louis Pasteur, Strasbourg, France) An infinite chessboard is given, with n black squares and the remainder white. Let the collection of black squares be denoted by G_{0}. At each moment $t=1,2,3, \ldots$, a simultaneous change of colour takes place throughout the board according to the following rule: every square gets the colour that dominates in the three square
configuration consisting of the square itself, the square above and the square to the right. New collections of black squares $G_{1}, G_{2}, G_{3}, \ldots$ are so formed. Prove that G_{n} is empty.

Solution. LEE Kai Seng (HKUST).

Call a rectangle (made up of squares on the chess board) desirable if with respect to its left-lower vertex as origin, every square in the first quadrant outside the rectangle is white. The most crucial fact is that knowing only the colouring of the squares in a desirable rectangle, we can determine their colourings at all later moments. Note that the smallest rectangle enclosing all black squares is a desirable rectangle. We will prove by induction that all squares of a desirable rectangle with at most n black squares will become white by $t=n$. The case $n=1$ is clear. Suppose the cases $n<N$ are true. Let R be a desirable rectangle with N black squares. Let R_{0} be the smallest rectangle in R containing all N black squares, then R_{0} is also desirable. Being smallest, the leftmost column and the bottom row of R_{0} must contain some black squares. Now the rectangle obtained by deleting the left column of R_{0} and the rectangle obtained by deleting the bottom row of R_{0} are desirable and contain at most $n-1$ black squares. So by $t=n-1$, all their squares will become white. Finally the left bottom corner square of R_{0} will be white by $t=n$.
Comments: This solution is essentially the same as the proposer's solution.
Other commended solvers: LEUNG Wai Ying (Queen Elizabeth School, Form 6).

Problem 115. (Proposed by Mohammed Aassila, Universite Louis Pasteur, Strasbourg, France) Find the locus of the points P in the plane of an equilateral triangle $A B C$ for which the triangle formed with $P A, P B$ and $P C$ has constant area.

Solution. LEUNG Wai Ying (Queen Elizabeth School, Form 6).

Without loss of generality, assume $P A \geq$ $P B, P C$. Consider P outside the circumcircle of $\triangle A B C$ first. If $P A$ is between $P B$ and $P C$, then rotate $\triangle P A C$
about A by 60° so that C goes to B and P goes to P^{\prime}. Then $\triangle A P P^{\prime}$ is equilateral and the sides of $\triangle P B P^{\prime}$ have length $P A$, $P B, P C$.

Let O be the circumcenter of $\triangle A B C, R$ be the circumradius and $x=A B=A C=$ $\sqrt{3} A O=\sqrt{3} R$. The area of $\triangle P B P^{\prime}$ is the sum of the areas of $\triangle P A P^{\prime}, \triangle P A B$, $\triangle P^{\prime} A B$ (or $\triangle P A C$), which is

$$
\begin{gathered}
\frac{\sqrt{3}}{4} P A^{2}+\frac{1}{2} P A \cdot x \sin \angle P A B \\
+\frac{1}{2} P A \cdot x \sin P A C
\end{gathered}
$$

Now
$\sin \angle P A B+\sin \angle P A C$
$=2 \sin 150^{\circ} \cos \left(\angle P A B-150^{\circ}\right)$
$=-\cos \left(\angle P A B+30^{\circ}\right)$
$=-\cos \angle P A O=\frac{P O^{2}-P A^{2}-R^{2}}{2 P A \cdot R}$.
Using these and simplifying, we get the area of $\triangle P B P^{\prime}$ is $\sqrt{3}\left(P O^{2}-R^{2}\right) / 4$.
If $P C$ is between $P A$ and $P B$, then rotate $\triangle P A C$ about C by 60° so that A goes to B and P goes to P^{\prime}. Similarly, the sides of $\triangle P B P^{\prime}$ have length $P A, P B, P C$ and the area is the same. The case $P B$ is between $P A$ and $P C$ is also similar.

For the case P is inside the circumcircle of $\triangle A B C$, the area of the triangle with sidelengths $P A, P B, P C$ can similarly computed to be $\sqrt{3}\left(R^{2}-P O^{2}\right) / 4$. Therefore, the locus of P is the circle(s) with center O and radius $\sqrt{R^{2} \pm 4 c / \sqrt{3}}$, where c is the constant area.

Comments: The proposer's solution only differed from the above solution in the details of computing areas.

Olympiad Corner

(continued from page 1)

Problem 4. (cont'd)

Determine all values of k for which 2000 is a term of the sequence.

Problem 5. The seven dwarfs decide to form four teams to compete in the Millennium Quiz. Of course, the sizes of the teams will not all be equal. For instance, one team might consist of Doc alone, one of Dopey alone, one of Sleepy, Happy and Grumpy as a trio, and one of Bashful and Sneezy as a pair. In
how many ways can the four teams be made up? (The order of the teams or of the dwarfs within the teams does not matter, but each dwarf must be in exactly one of the teams.)
Suppose Snow White agreed to take part as well. In how many ways could the four teams then be formed?

Conconcon

Majorization Inequality

(continued from page 2)
For the case $n>2$, let $a_{i}=x_{i} /\left(x_{1}+\cdots+\right.$
x_{n}) for $i=1, \ldots, n$, then $a_{1}+\cdots+a_{n}=1$.
In terms of a_{i} 's, the inequality to be proved becomes

$$
\sum_{1 \leq i<j \leq n} a_{i} a_{j}\left(a_{i}^{2}+a_{j}^{2}\right) \leq C
$$

The left side can be expanded and regrouped to give

$$
\begin{aligned}
& \sum_{i=1}^{n} a_{i}^{3}\left(a_{1}+\cdots+a_{i-1}+a_{i+1}+\cdots a_{n}\right) \\
& \quad=a_{1}^{3}\left(1-a_{1}\right)+\cdots+a_{n}^{3}\left(1-a_{n}\right)
\end{aligned}
$$

Now $f(x)=x^{3}(1-x)=x^{3}-x^{4}=$ is strictly convex on $\left[0, \frac{1}{2}\right]$ because the second derivative is positive on $\left(0, \frac{1}{2}\right)$. Since the inequality is symmetric in the a_{i} 's, we may assume $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$. If $a_{1} \leq \frac{1}{2}$, then since

$$
\left(\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0\right) \succ\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

by the majorization inequality,

$$
\begin{aligned}
& f\left(a_{1}\right)+f\left(a_{2}\right)+\cdots+f\left(a_{n}\right) \\
\leq & f\left(\frac{1}{2}\right)+f\left(\frac{1}{2}\right)+f(0)+\cdots+f(0)=\frac{1}{8} .
\end{aligned}
$$

If $a_{1}>\frac{1}{2}$, then $1-a_{1}, a_{2}, \ldots, a_{n}$ are in [0,
$\left.\frac{1}{2}\right]$. Since

$$
\left(1-a_{1}, 0, \ldots, 0\right) \succ\left(a_{2}, \ldots, a_{n}\right)
$$

by the majorization inequality and case n $=2$, we have

$$
\begin{aligned}
& f\left(a_{1}\right)+f\left(a_{2}\right)+\cdots+f\left(a_{n}\right) \\
\leq & f\left(a_{1}\right)+f\left(1-a_{1}\right)+f(0)+\cdots+f(0) \\
= & f\left(a_{1}\right)+f\left(1-a_{1}\right) \leq \frac{1}{8}
\end{aligned}
$$

Equality holds if and only if two of the variables are equal and the other $n-2$ variables all equal 0 .

