Mathematical Excalibyt

Volume 5, Number 5

November 2000 — December 2000

Olympiad Corner

British Mathematical
January 2000:

Olympiad,

Time allowed: 3 hours 30 minutes

Problem 1. Two intersecting circles C,;
and C, have a common tangent which
touches C; at P and C, at Q. The two
circles intersect at M and N, where N is
nearer to PQ than M is. The line PN
meets the circle C, again at R. Prove that
MQ bisects angle PMR.

Problem 2. Show that for every positive
integer n,

121" — 25" +1900"
is divisible by 2000.

Problem 3. Triangle ABC has a right
angle at A. Among all points P on the
perimeter of the triangle, find the
position of P such that

AP + BP + CP
is minimized.

~ (4"

Problem 4. For each positive integer &,
define the sequence {an} by

ap=1 and a,=kn+ (=" a,,

foreach n > 1.

(continued on page 4)
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Maijorization Inequality

KinY. Li

The majorization inequality is a
generalization of Jensen's inequality.
While Jensen's inequality provides one
extremum (either maximum or minimum)
to a convex (or concave) expression, the
majorization inequality can provide both
in some cases as the examples below will
show. In order to state this inequality, we
first introduce the concept of majorization
for ordered set of numbers. If

X|2X) 22X,

VIZY2Z 2 Yy
x12y1, X1+X22y1+y2, ey
Xyt X 2yt Y,
and
X+t x, =yt Yy,
then we say (xq,Xp,...,X,) majorizes
(31 ¥25---»y,) and write

(X715 X050 X)) = (V15 Y2000 Vo) -

Now we are ready to state the inequality.

Majorization Inequality. If the function f
is convex on the interval I = [a, b] and
(X1, X0, o0 X)) = (V1> Y25 o0 Y1)

for x;,y; €I, then
FO)+ fx)+-+ f(x,)
2 fD)+ )+ + f(y,).

For strictly convex functions, equality
holds ifand only if x; =y; fori=1,2, ...,
n. The statements for concave functions
can be obtained by reversing inequality
Signs.

Next we will show that the majorization
inequality implies Jensen's inequality.
This follows from the observation that if
x| 2 Xy 2+ 2x,, then (X1, Xp,...,Xx,) >
(x, x, ..., x), where x is the arithmetic mean
of x, x5, ..., x,. (Thus, applying the
majorization inequality, we get Jensen's
inequality.) Fork=1,2,...,n-1, we have
to show x; +---+x; 2 kx. Since
(n=k)(xg +-+xp)
2 (n—k)kx, 2k(n—k)x;
2k(Xp e +0x,).

Adding k(x+---+x;) to the two
extremes, we get

n(xp++x,) 2 k(x) +--+x,) = knx.

Therefore, x; +---+x;, = kx.

Example 1.
show that

For acute triangle ABC,

1< cosA+cosB+cosCS%
and determine when equality holds.

Solution. Without loss of generality,

assume A=2B2>C. Then A>27x/3 and

C<rz/3. Since #/22A2x/3 and
T2A+B(=7n-C)22x/3,

we have (7/2,7/2,0)> (A, B, C) ~

(z/3,7/3,7/3). Since f(x) = cos x is

strictly concave on I = [0, /2], by the

majorization inequality,

1= f@ + f[%] +£(0)

< flA) + fiB) + f(C)

=cosA +cos B+ cos C

5553

For the first inequality, equality cannot
hold (as two of the angles cannot both be
right angles). For the second inequality,
equality holds if and only if the triangle is
equilateral.

Remarks. This example illustrates the
equilateral triangles and the degenerate
case of two right angles are extreme cases
for convex (or concave) sums.

Example 2. Prove thatif a, b = 0, then

Ya+¥a +Yp+3p <Ya+¥b +Yp+¥a.

Nov. 1995,
Problem 36 of Problem Section, proposed
by E.M. Kaye)

(Source: Math Horizons,

Solution. Without loss of generality, we

may assume b=a= 0. Among the
numbers
X =b+%, Xy =b+%,

X3 =a+%, Xy =a+%,
x; is the maximum and x4 is the
minimum. Since x;+ x4 = X +x3, we
get (x1, x4)>(xp, x3) or (x3, Xp)
(depends on which of x, or xj is larger).
Since f{x) = %/; is concave on the interval
[0, =), so by the majorization inequality,
FG+ O S fl)+ fx),

which is the desired inequality.

Example 3. Find the maximum of a+

b2+ 2 if —1<a b c <1 anda+b+c
=—1/2.

Solution. Note the continuous function
fix) = x'% is convex on [-1, 1] since
Fl =132x">00n(=1,1). If1 2 a
2b2c2-1and

a+b+c=—l,
2

then we get (1,-1/2,-1) > (a, b, ¢). This
is because 1 > a and

l=1—12—c—l=a+b.
2 2 2
So by the majorization inequality,
a12+b12+612
=fla) + fla) + f(c)
1
Sf(1)+f(—5j+f(—1)
1
=2+ ﬁ .

The maximum value 2 + (1/ 212) is

attained whena=1,b=-1/2 and c =-1.

Remarks.  The example above is a

simplification of a problem in the 1997
Chinese Mathematical Olympiad.

Example 4. (1999 IMO) Let n be a fixed
integer, withn > 2.

(a) Determine the least constant C such

4
inj

1<i<n

that the inequality
2 2
Z xixj(xi +XJ)SC[
1<i< j<n

holds for all real numbers x;, x,, ...,
X, = 0.

(b) For this constant C, determine when
equality holds.

Solution. Consider the case n = 2 first.
Let xy=m + hand x,=m — h, then m =

(xl + xz)/2,h=(x1 - XZ)/Q, and
xlxz(x12+x%)=2(m4—h4)
<2m* =%(x1+x2)4

with equality if and only if 2 = 0, i.e. x;

= Xp.

(continued on page 4)
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Problem Corner

We welcome readers to submit their
solutions to the problems posed below
for publication consideration. Solutions
should be preceeded by the solver’s
name, home (or email) address and
school affiliation. Please send
submissions to Dr. Kin Y. Li, Department
of Mathematics, Hong Kong University
of Science & Technology, Clear Water
Bay, The deadline for

submitting solutions is February 4, 2001.

Kowloon.

Problem 116. Show that the interior of a
convex quadrilateral with area A and
perimeter P contains a circle of radius
A/P.

Problem 117. The lengths of the sides of
a quadrilateral are positive integers. The
length of each side divides the sum of the
other three lengths. Prove that two of the
sides have the same length.

Problem 118. Let R be the real numbers.
Find all functions f: R — R such that for

all real numbers x and y,

FOfQ) +x) =xy+ f(x).

Problem 119. A circle with center O is
internally tangent to two circles inside it
at points S and 7. Suppose the two
circles inside intersect at M and N with N
closer to ST. Show that OM 1 MN if and
only if S, N, T are collinear. (Source:
1997  Chinese High Math
Competitiion)

Senior

Problem 120. Twenty-eight integers are
chosen from the interval [104, 208].
Show that there exist two of them having
a common prime divisor.

sfeste st ste stestesteskeoskoskosko sk sk sk skoskosk

Solutions

stk sk stk s sfeoskesk skeokoskoskotokoskok

Problem 111. Is it possible to place 100
solid balls in space so that no two of them
have a common interior point, and each
of them touches at least one-third of the
others?  (Source: 1997 Czech-Slovak
Match)

Solution 1. LEE Kai Seng (HKUST).

Take a smallest ball B with center at O and

radius . Any other ball touching B at x
contains a smaller ball of radius » also
touching B at x. Since these smaller balls
are contained in the ball with center O and
radius 37, which has a volume 27 times the
volume of B, there are at most 26 of these
other balls touching B.

Solution 2. LEUNG Wai Ying (Queen
Elizabeth School, Form 6).

Consider a smallest ball S with center O
and radius r. Let §; and §; (with

centers 0; and O; and radii 7; and r;,

respectively) be two other balls touching S
at b and P;, respectively. Since r;, r;

2r,wehave 0; O; 2+ 2r+71; =

J
0 0; and similarly 0; O; 2 00;. So
0; O; is the longest side of AOO; O;.

Hence £P,0OP; = £0;00; 260°.

For ball S;, consider the solid cone with
vertex at O obtained by rotating a 30°
angle about OP. as axis. Let A; be the
part of this cone on the surface of S. Since
ZP,OP; 260° , the interiors of A; and
A; do not intersect. Since the surface

area of each A; is than

7(rsin30°)> = 7 /4, which is 1/16 of

the surface area of S, S can touch at most
15 other balls. So the answer to the
question is no.

greater

Other recommended solvers: CHENG
Kei Tsi (La Salle College, Form 6).

Problem 112. Find all positive integers (x,
n) such that x" + 2" + 1 is a divisor of
P L 1998
Romanian Math Olympiad)

Solution. CHENG Kei Tsi (La Salle
College, Form 6), LEE Kevin (La Salle

College, Form 5) and LEUNG Wai Ying
(Queen Elizabeth School, Form 6).

(Source:

For x = 1, 2(1" + 2" + 1) > 1" 4+
2 1> 1"+ 2" 4+ 1
202" + 2" + 1) > 2M Lot
2" + 2" +1. Forx=3,3(3" + 2" +1)

> 3ol s 23 4 2" 4 ).
So there are no solutions with x =1, 2, 3.

For x = 2,

For x>24 , if n>2 , then we get
x(xX"+2"+ 1) > " 42" 11 Now

xn+l+2n+1+ 1

=(x=D(x"+2"+ 1)
+x" 2"+ DHx+3-2"+2

>x-D(x"+2"+1)

because for n = 2, x" — (2" + D)x +
2" = x2 _5x+8>0andforn > 3,
(2" Dx = x4 22" — 1y >o0.
Hence only n =1 and x > 4 are possible.
In that case, x" + 2"+ 1 =x+ 3 isa
divisorof "M +2" 4 1= x2+5=(x—
3)(x +3) + 14 if and only if x + 3 is a
divisor of 14. Sincex+3 =2 7, x=4 or
11. So the solutions are (x, y) = (4, 1) and
(11, 1).

Problem 113. Leta, b, c>0and abc < 1.

Prove that
g+£+£2 atb+c.
c a
Solution. LEUNG Wai Ying (Queen

Elizabeth School, Form 6).

Since abc < 1, we get 1/(bc) 2 a, 1/(ac)
> b and 1/(ab) = c. By the AM-GM
inequality,

2
ﬁ+£=£+£+£23%/a—23a.
c b ¢ ¢ b bc

Similarly, 2b/a + a/c = 3b and 2¢/b + b/a
2 3c. Adding these and dividing by 3,
we get the desired inequality.

Alternatively, let x = 9\/a4b/c2 , Yy =

9\/c4a/b2 and z = 3 b*c/a® . We have

a= xzy, b=z%x c= yzz and xyz =

Jabe < 1. Using this and the
re-arrangement inequality, we get
2 2 2
a b ¢ x° z y
=
c a b yz xy zx
2 2 2
X~z
2 xyz SR A +y3 +7°
Yz xy =

2x2y+yzz+zzx=a+b+c.

Problem 114. (Proposed by Mohammed
Aassila, Louis
An
chessboard is given, with n black squares
Let the
collection of black squares be denoted by
Gy .
simultaneous change of colour takes place

Universite Pasteur,

Strasbourg, France) infinite

and the remainder white.
At each moment =1, 2, 3, ..., a
throughout the board according to the

following rule: every square gets the
colour that dominates in the three square
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configuration consisting of the square
itself, the square above and the square to
the right.
squares Gy, G, Gs, ...

New collections of black
are so formed.
Prove that G,, is empty.

Solution. LEE Kai Seng (HKUST).

Call a rectangle (made up of squares on
the chess board) desirable if with respect
to its left-lower vertex as origin, every
square in the first quadrant outside the
rectangle is white. The most crucial fact is
that knowing only the colouring of the
squares in a desirable rectangle, we can
determine their colourings at all later
moments. Note that the smallest rectangle
enclosing all black squares is a desirable
rectangle. We will prove by induction that
all squares of a desirable rectangle with at
most n black squares will become white
byt =n. The case n =1 is clear. Suppose
Let R be a
desirable rectangle with N black squares.

the cases n < N are true.

Let Ry be the smallest rectangle in R
containing all N black squares, then Ry is
the
leftmost column and the bottom row of

also desirable.  Being smallest,
Ry must contain some black squares.
Now the rectangle obtained by deleting
the left column of R; and the rectangle
obtained by deleting the bottom row of
R, are desirable and contain at most n - 1
black squares. So by t = n - 1, all their
Finally the

left bottom corner square of R, will be

squares will become white.

white by ¢ = n.

Comments: This solution is essentially

the same as the proposer's solution.

Other commended solvers: LEUNG Wai
Ying (Queen Elizabeth School, Form 6).

Problem 115. (Proposed by Mohammed
Aassila, Universite Louis Pasteur, Stras-
bourg, France) Find the locus of the points
P in the plane of an equilateral triangle ABC
for which the triangle formed with PA, PB
and PC has constant area.

Solution. LEUNG Wai Ying (Queen
Elizabeth School, Form 6).

Without loss of generality, assume PA >
PB, PC. Consider P outside the
circumcircle of A ABC first. If PA is
between PB and PC, then rotate A PAC

about A by 60° so that C goes to B and P
goes to P'. Then AAPP’ is equilateral
and the sides of A PBP' have length PA,
PB, PC.

Let O be the circumcenter of AABC, R
be the circumradius and x = AB = AC =
\/EAO = \/ER. The area of APBP'is

the sum of the areas of A PAP', A PAB,
A P'AB (or A PAC), which is

J3

TPA2 +%PA'xsin /PAB

+%PA-xsinPAC.

Now
sin ZPAB + sin ZPAC

2 s5in150° cos( ZPAB—150")
—cos(ZPAB+30°%)
PO? - PA% —R?

2PA-R
Using these and simplifying, we get the
area of APBP' is v3(PO? —R?)/4.
If PC is between PA and PB, then rotate
APAC about C by 60° so that A goes to
B and P goes to P'. Similarly, the sides of
APBP' have length PA, PB, PC and the

area is the same. The case PB is between
PA and PC is also similar.

=—-cosZPAO =

For the case P is inside the circumcircle
of AABC, the area of the triangle with
sidelengths PA, PB, PC can similarly

computed to be \/E(RZ—POZ)M .

Therefore, the locus of P is the circle(s)

with center O and radius \/R2 t4c/ \/5 s

where c is the constant area.

Comments: The proposer's solution only
differed from the above solution in the
details of computing areas.

m
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(continued from page 1)

Problem 4. (cont’d)

Determine all values of k for which 2000
is a term of the sequence.

Problem 5. The seven dwarfs decide to
form four teams to compete in the
Millennium Quiz. Of course, the sizes of
the teams will not all be equal. For
instance, one team might consist of Doc
alone, one of Dopey alone, one of
Sleepy, Happy and Grumpy as a trio, and
one of Bashful and Sneezy as a pair. In

how many ways can the four teams be
made up? (The order of the teams or of
the dwarfs within the teams does not
matter, but each dwarf must be in exactly
one of the teams.)

Suppose Snow White agreed to take part
as well. In how many ways could the four
teams then be formed?

m
Majorization Inequality
(continued from page 2)

For the case n > 2, let a; = x; /[(x; +---+

x,) fori=1,...,n,then a;+---+a, =1.
In terms of q;'s, the inequality to be
proved becomes

> a,-aj(a,-2+a§)sc.
1<i< j<n

The left side can be expanded and
regrouped to give
< 3
Yai(ay+-+ai_ +a, +-a,)
i=1
=a13(1—a1)+---+a3(1—an).

4

Now f(x) = x3(1—x)=x3—x = is

. 1
strictly convex on [O,E} because the

e " 1
second derivative is positive on (0, Ej

Since the inequality is symmetric in the
a;'s, we may assume a; =a, =---2a,,.

If a4 S% , then since

11
[E,E,O,...,O]>— (al,az,...,an),

by the majorization inequality,

Flap)+ fay)+-+ fay,)
1 1 1
sf(5j+f(5]+f<0>+--~+f<0>—g.

1 .
If g >E,then 1-ay,a,,...,a, arein |0,

l]. Since
2
(1-4;,0,...,0) = (ay,...,a,) ,

by the majorization inequality and case n
=2, we have

flap) + flay) + -+ f(a,)
< flap+ f=a)+fO)+---+£(0)

=f(a1)+f(1—a1)sé-

Equality holds if and only if two of the
variables are equal and the other n—2
variables all equal 0.



