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Problem 1.  Two intersecting circles C1 

and C2 have a common tangent which 

touches C1 at P and C2 at Q.  The two 

circles intersect at M and N, where N is 

nearer to PQ than M is.  The line PN 

meets the circle C2 again at R.  Prove that 

MQ bisects angle PMR. 
 

Problem 2.  Show that for every positive 

integer n, 

nnnn )4(190025121 −−+−  

is divisible by 2000. 
 

Problem 3.  Triangle ABC has a right 

angle at A.  Among all points P on the 

perimeter of the triangle, find the 

position of P such that 

AP + BP + CP 

is minimized. 
 

Problem 4.  For each positive integer k, 

define the sequence { }na  by 

a0 = 1   and   an = kn + n)1(−  an-1 

for each  n ≥  1. 

(continued on page 4) 

 

我們知道，圓錐曲線是一些所謂二

次形的曲線，即一條圓錐曲線會滿足

以下的一般二次方程：Ax
2
 + Bxy + Cy

2
 

+ Dx + Ey + F = 0，其中 A、B 及 C 不

會同時等於 0。 假設 A ≠ 0，那麼我們

可以將上式除以 A，並化簡成以下模

式： 

x
2
 + bxy + cy

2
 + dx + ey + f = 0。 

 

以上的方程給了我們一個啟示：就

是五點能夠定出一個圓錐曲線。 因為

如果我們知道了五個不同點的坐標，我

們可以將它們分別代入上面的方程

中，從而得到一個有 5 個未知數（即 b、

c、d、e 和 f ）和 5 條方程的方程組。

祇要解出各未知數的答案，就可以知道

該圓錐曲線的方程了。 

 

不過，上述方法雖然明顯，但真正

操作時又困難重重！這是由於有 5 個

未知數的聯立方程卻不易解！而且我

們在計算之初假設 x
2 的係數非零，但

萬一這假設不成立，我們就要改設 B

或 C 非零，並需要重新計算一次了。 
 

幸好，我們可以通過「圓錐曲線族」

的想法來解此問題。方法見下例： 

 

例例例例:::: 求穿過 A(1, 0), B(3, 1), C(0, 3), 

D(−4, −1), E(−2, −3) 五點的圓錐曲線

方程。 
 

解解解解:::: 利用兩點式，先求出以下各直線的

方程： 
 

AB : 

13

01

1

0

−

−
=

−

−

x

y
，即 x − 2y − 1 = 0 

CD : 
04

31

0

3

−−

−−
=

−

−

x

y
，即 x − y + 3 = 0 

AC : 
10

03

1

0

−

−
=

−

−

x

y
，即 3x + y − 3 = 0 

BD : 
34

11

3

1

−−

−−
=

−

−

x

y
，即 2x − 7y + 1 = 0 

 

然後將 AB 和 CD 的方程「相乘」，

得一條圓錐曲線的方程： 
 
(x − 2y − 1)(x − y + 3) = 0，即 x

2
 − 3xy + 

2y
2
 + 2x − 5y − 3 = 0。 

 

注意注意注意注意：：：：雖然上述的方程是一條二次形

「曲線」，但實際上它是由兩條直線所

組成的。同時，亦請大家留意，該曲線

同時穿過 A、B、C 和 D 四點。 
 

類似地，我們又將 AC 和 BD「相

乘」，得： 

(3x + y − 3)(2x − 7y + 1) = 0，即 6x
2
 − 19xy 

− 7y
2
 − 3x + 22y − 3 = 0。 

 

考慮圓錐曲線族： 

x
2
 − 3xy + 2y

2
 + 2x − 5y − 3 + k(6x

2
 − 19xy 

− 7y
2
 − 3x + 22y − 3) = 0。很明顯，無論

k 取任何數值，這圓錐曲線族都會同樣

穿過 A、B、C 和 D 四點。 
 

最後，將 E 點的坐標代入曲線族

中，得：12 + k (−216) = 0，即 k = 1/18，

由此得所求的圓錐曲線方程為 

 

18(x
2
 − 3xy + 2y

2
 + 2x − 5y − 3) + (6x

2
 − 

19xy − 7y
2
 − 3x + 22y − 3) = 0，即 

 

24x
2
 − 73xy + 29y

2
 + 33x − 68y − 57 = 0。 
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Majorization Inequality 

Kin Y. Li 
 
The majorization inequality is a 

generalization of Jensen's inequality.  

While Jensen's inequality provides one 

extremum (either maximum or minimum) 

to a convex (or concave) expression, the 

majorization inequality can provide both 

in some cases as the examples below will 

show.  In order to state this inequality, we 

first introduce the concept of majorization 

for ordered set of numbers.  If 

nxxx ≥≥≥ L21 , 

nyyy ≥≥≥ L21 , 

...,     ,    , 212111 yyxxyx +≥+≥  

1111 −− ++≥++ nn yyxx LL  

and 

nn yyxx ++=++ LL 11 , 

then we say ) ..., , ,( 21 nxxx  majorizes 

) ..., , ,( 21 nyyy  and write 

) ..., , ,( 21 nxxx f ) ..., , ,( 21 nyyy . 

Now we are ready to state the inequality. 
 
Majorization Inequality.  If the function f 

is convex on the interval I = [a, b] and 

) ..., , ,( 21 nxxx f ) ..., , ,( 21 nyyy  

for Iyx ii ∈, , then 

)()()( 21 nxfxfxf +++ L  

)()()( 21 nyfyfyf +++≥ L . 
 

For strictly convex functions, equality 

holds if and only if ii yx =  for i = 1, 2, …, 

n.  The statements for concave functions 

can be obtained by reversing inequality 

signs. 
 
Next we will show that the majorization 

inequality implies Jensen's inequality.  

This follows from the observation that if 

nxxx ≥≥≥ L21 , then ) ..., , ,( 21 nxxx  f  

(x, x, …, x), where x is the arithmetic mean 

of 1x , 2x , …, nx .  (Thus, applying the 

majorization inequality, we get Jensen's 

inequality.)  For k = 1, 2, …, n - 1, we have 

to show kxxx k ≥++L1 .  Since 

))(( 1 kxxkn ++− L  

1)()( +−≥−≥ kk xknkkxkn  

).( 1 nk xxk L+≥ +  

Adding )( 1 kxxk ++L  to the two 

extremes, we get 

.)()( 11 knxxxkxxn nk =++≥++ LL  

Therefore, .1 kxxx k ≥++L  

Example 1.  For acute triangle ABC, 

show that 

2

3
coscoscos1 ≤++≤ CBA  

and determine when equality holds. 
 

Solution.  Without loss of generality, 

assume .CBA ≥≥   Then 3/π≥A  and 

3/π≤C .  Since 3/2/ ππ ≥≥ A  and 

3/2)( πππ ≥−=+≥ CBA , 

we have f )0 ,2/ ,2/( ππ (A, B, C) f  

)3/ ,3/ ,3/( πππ .  Since f(x) = cos x is 

strictly concave on I = [0, ],2/π  by the 

majorization inequality, 

)0(
22

1 fff +







+







=

ππ
 

  ≤  f(A) + f(B) + f(C) 

   = cos A + cos B + cos C 

  ≤
2

3

333
=








+







+






 πππ
fff . 

For the first inequality, equality cannot 

hold (as two of the angles cannot both be 

right angles).  For the second inequality, 

equality holds if and only if the triangle is 

equilateral. 
 

Remarks.  This example illustrates the 

equilateral triangles and the degenerate 

case of two right angles are extreme cases 

for convex (or concave) sums. 
 
Example 2.  Prove that if a, b ≥  0, then 

.3 33 33 33 3 abbabbaa +++≤+++
 

(Source: Math Horizons, Nov. 1995, 

Problem 36 of Problem Section, proposed 

by E.M. Kaye) 
 

Solution.  Without loss of generality, we 

may assume ≥≥ ab 0.  Among the 

numbers 

3
1 bbx += ,     3

2 abx += , 

3
3 bax += ,     3

4 aax += , 

1x  is the maximum and 4x  is the 

minimum.  Since 1x + 4x  = 2x + 3x , we 

get ( 1x , 4x ) f ( 2x , 3x ) or ( 3x , 2x ) 

(depends on which of 2x  or 3x  is larger).  

Since f(x) = 3 x  is concave on the interval 

[0, ∞ ), so by the majorization inequality, 

)()()()( 2314 xfxfxfxf +≤+ , 

which is the desired inequality. 

Example 3.  Find the maximum of +
12a  

1212 cb +  if ≤−1  a, b, c 1≤  and a + b + c 

= .2/1−  
 

Solution.  Note the continuous function 

f(x) = 12x  is convex on [–1, 1] since 

)('' xf  = 132 ≥
10x  0 on (–1, 1).  If 1 ≥  a 

≥  b ≥  c ≥ 1−  and  

2

1
−=++ cba , 

then we get (1, –1/2, –1) f  (a, b, c).  This 

is because 1 ≥  a and 

.
2

1

2

1
1

2

1
bac +=−−≥−=  

So by the majorization inequality, 

  121212 cba ++  

= f(a) + f(a) + f(c) 

)1(
2

1
)1( −+








−+≤ fff  

= 2 + 
122

1
. 

The maximum value 2 + (1/ 122 ) is 

attained when a = 1, b = –1/2 and c = –1. 
 

Remarks.  The example above is a 

simplification of a problem in the 1997 

Chinese Mathematical Olympiad. 
 
Example 4.  (1999 IMO)  Let n be a fixed 

integer, with n ≥  2. 

 
(a) Determine the least constant C such 

that the inequality 

       ( )
4

1 1

22∑ ∑
≤<≤ ≤≤









≤+

nji ni
ijiji xCxxxx  

       holds for all real numbers x1, x2, …,   

       xn ≥ 0. 
 

(b) For this constant C, determine when 

equality holds. 
 

Solution.  Consider the case n = 2 first.  

Let 1x = m + h and 2x = m – h, then m = 

( 1x  + 2x )/2, h = ( 1x  – 2x )/2 and 

 

( ) ( )442
2

2
121 2 hmxxxx −=+  

( )421
4

8

1
2 xxm +=≤  

with equality if and only if h = 0, i.e. 1x  

= 2x . 

 

(continued on page 4) 
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Problem Corner 
 

We welcome readers to submit their 

solutions to the problems posed below 

for publication consideration.  Solutions 

should be preceeded by the solver’s 

name, home (or email) address and 

school affiliation.  Please send 

submissions to Dr. Kin Y. Li, Department 

of Mathematics, Hong Kong University 

of Science & Technology, Clear Water 

Bay, Kowloon.  The deadline for 

submitting solutions is February 4, 2001. 
 

Problem 116.  Show that the interior of a 

convex quadrilateral with area A and 

perimeter P contains a circle of radius 

A/P.   
 

Problem 117.  The lengths of the sides of 

a quadrilateral are positive integers.  The 

length of each side divides the sum of the 

other three lengths.  Prove that two of the 

sides have the same length. 
 

Problem 118.  Let R be the real numbers.  

Find all functions f : R →  R such that for 

all real numbers x and y, 

f (xf (y) + x) = xy + f (x). 

 

Problem 119.  A circle with center O is 

internally tangent to two circles inside it 

at points S and T.  Suppose the two 

circles inside intersect at M and N with N 

closer to ST.  Show that OM ⊥ MN if and 

only if S, N, T are collinear.  (Source: 

1997 Chinese Senior High Math 

Competitiion) 
 

Problem 120.  Twenty-eight integers are 

chosen from the interval [104, 208].  

Show that there exist two of them having 

a common prime divisor. 

 

***************** 

Solutions 

***************** 

Problem 111.  Is it possible to place 100 

solid balls in space so that no two of them 

have a common interior point, and each 

of them touches at least one-third of the 

others?  (Source: 1997 Czech-Slovak 

Match) 
 
Solution 1.  LEE Kai Seng (HKUST).  
 

Take a smallest ball B with center at O and 

radius r.  Any other ball touching B at x 

contains a smaller ball of radius r also 

touching B at x.  Since these smaller balls 

are contained in the ball with center O and 

radius 3r, which has a volume 27 times the 

volume of B, there are at most 26 of these 

other balls touching B. 
 

 

Solution 2.  LEUNG Wai Ying (Queen 

Elizabeth School, Form 6). 
 

Consider a smallest ball S with center O 

and radius r.  Let iS  and jS  (with 

centers iO  and jO  and radii ir  and jr , 

respectively) be two other balls touching S 

at iP  and jP , respectively.  Since ir , jr  

≥  r, we have iO jO ≥ ir  + jr  ≥  r + ir  = 

O iO  and similarly iO jO ≥  O jO .  So 

iO jO  is the longest side of ∆ O iO jO .  

Hence 
o

60≥∠=∠ jiji OOOOPP . 

 

For ball iS , consider the solid cone with 

vertex at O obtained by rotating a o30  

angle about iOP  as axis.  Let iA  be the 

part of this cone on the surface of S.  Since 
o

60≥∠ jiOPP , the interiors of iA  and 

jA  do not intersect.  Since the surface 

area of each iA  is greater than 

2)30sin( orπ = 4/ 2rπ , which is 1/16 of 

the surface area of S, S can touch at most 

15 other balls.  So the answer to the 

question is no. 
 

Other recommended solvers:  CHENG 
Kei Tsi (La Salle College, Form 6). 
 

Problem 112.  Find all positive integers (x, 

n) such that nx  + n2  + 1 is a divisor of 
1+nx  + 12 +n  + 1.  (Source: 1998 

Romanian Math Olympiad) 
Solution.  CHENG Kei Tsi (La Salle 
College, Form 6), LEE Kevin (La Salle 
College, Form 5) and LEUNG Wai Ying 
(Queen Elizabeth School, Form 6). 
 

For x = 1, 2( n1  + n2  + 1) > 11 +n  + 
12 +n  + 1 > n1  + n2  + 1.  For x = 2, 

2( n2  + n2  + 1) > 12 +n  + 12 +n  + 1 > 
n2  + n2  + 1.  For x = 3, 3( n3  + n2  + 1) 

> 13 +n  + 12 +n  + 1 > 2( n3  + n2  + 1).  

So there are no solutions with x = 1, 2, 3.    
 
For 4≥x , if 2≥n , then we get 

x( nx + n2 + 1) > 1+nx + 12 +n  + 1.  Now  

1+nx + 12 +n + 1 

= (x – 1)( nx + n2 + 1) 

   + nx  – ( n2 + 1) x + n23 ⋅ + 2  

> (x – 1)( nx + n2 + 1) 
 

because for n = 2, nx  – ( n2 + 1)x + 
12 +n  = 2x  – 5x + 8 > 0 and for n ≥  3, 

nx – ( n2 + 1)x ≥  x( 14 −n  – n2  – 1) > 0.  

Hence only n = 1 and x ≥  4 are possible.  

In that case, nx  + n2 + 1 = x + 3 is a 

divisor of 1+nx + 12 +n + 1 = 2x + 5 = (x– 

3)(x + 3) + 14 if and only if x + 3 is a 

divisor of 14.  Since x + 3 ≥  7, x = 4 or 

11.  So the solutions are (x, y) = (4, 1) and 

(11, 1). 
 

Problem 113.  Let a, b, c > 0 and abc ≤  1.  

Prove that 

cba
b

c

a

b

c

a
++≥++ . 

 

Solution.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 

Since abc ≤  1, we get 1/(bc) ≥  a, 1/(ac) 

≥  b and 1/(ab) ≥  c.  By the AM-GM 

inequality, 

a
b

c

c

a

c

a

b

c

c

a
3

bc

a
 3

2 3
2

≥≥++=+ . 

Similarly, 2b/a + a/c ≥  3b and 2c/b + b/a 

≥  3c.  Adding these and dividing by 3, 

we get the desired inequality. 

Alternatively, let x = 
9 24

/ cba , y = 

9 24
/bac  and z = 

9 24
/ acb .  We have 

a = 2x y, b = 2z x, c = 2y z and xyz = 

≤3 abc  1.  Using this and the 

re-arrangement inequality, we get 

zx

y

xy

z

yz

x

b

c

a

b

c

a
222

++=++  

333
222

zyx
zx

y

xy

z

yz

x
xyz ++=














++≥  

cbaxzzyyx ++=++≥
222

. 
 

Problem 114.  (Proposed by Mohammed 

Aassila, Universite Louis Pasteur, 

Strasbourg, France)  An infinite 

chessboard is given, with n black squares 

and the remainder white.  Let the 

collection of black squares be denoted by 

0G .  At each moment t = 1, 2, 3, …, a 

simultaneous change of colour takes place 

throughout the board according to the 

following rule: every square gets the 

colour that dominates in the three square 
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configuration consisting of the square 

itself, the square above and the square to 

the right.  New collections of black 

squares 1G , 2G , 3G , … are so formed.  

Prove that nG  is empty. 
 
Solution.  LEE Kai Seng (HKUST). 
 

Call a rectangle (made up of squares on 

the chess board) desirable if with respect 

to its left-lower vertex as origin, every 

square in the first quadrant outside the 

rectangle is white.  The most crucial fact is 

that knowing only the colouring of the 

squares in a desirable rectangle, we can 

determine their colourings at all later 

moments.  Note that the smallest rectangle 

enclosing all black squares is a desirable 

rectangle.  We will prove by induction that 

all squares of a desirable rectangle with at 

most n black squares will become white 

by t = n.  The case n = 1 is clear.  Suppose 

the cases n < N are true.  Let R be a 

desirable rectangle with N black squares.  

Let 0R  be the smallest rectangle in R 

containing all N black squares, then 0R  is 

also desirable.  Being smallest, the 

leftmost column and the bottom row of 

0R  must contain some black squares.  

Now the rectangle obtained by deleting 

the left column of 0R  and the rectangle 

obtained by deleting the bottom row of 

0R  are desirable and contain at most n - 1 

black squares.  So by t = n - 1, all their 

squares will become white.  Finally the 

left bottom corner square of 0R  will be 

white by t = n. 
 

Comments:  This solution is essentially 

the same as the proposer's solution. 
 

Other commended solvers:  LEUNG Wai 

Ying (Queen Elizabeth School, Form 6). 
 

Problem 115.  (Proposed by Mohammed 

Aassila, Universite Louis Pasteur, Stras- 

bourg, France)  Find the locus of the points 

P in the plane of an equilateral triangle ABC 

for which the triangle formed with PA, PB 

and PC has constant area. 
 
Solution.  LEUNG Wai Ying (Queen 
Elizabeth School, Form 6). 
 

Without loss of generality, assume PA ≥  

PB, PC.  Consider P outside the 

circumcircle of ∆ ABC first.  If PA is 

between PB and PC, then rotate ∆ PAC 

about A by o60  so that C goes to B and P 

goes to P'.  Then ∆ APP' is equilateral 

and the sides of ∆ PBP' have length PA, 

PB, PC. 
 
Let O be the circumcenter of ∆ ABC, R 

be the circumradius and x = AB = AC = 

AO3  = R3 .  The area of ∆ PBP' is 

the sum of the areas of ∆ PAP' , ∆ PAB, 

∆ P'AB (or ∆ PAC), which is 

PABxPAPA ∠⋅+ sin   
2

1

4

3 2
 

PACxPA sin   
2

1
⋅+ . 

Now 

  PACPAB ∠+∠ sin    sin  

= 2 sin o150  cos( o150−∠PAB ) 

= )30cos( o
+∠− PAB  

RPA

RPAPO
PAO

⋅

−−
=∠−=

2
cos

222

. 

Using these and simplifying, we get the 

area of 'PBP∆  is .4/)(3 22 RPO −  

If PC is between PA and PB, then rotate 

PAC∆  about C by o60  so that A goes to 

B and P goes to P'.  Similarly, the sides of 

'PBP∆  have length PA, PB, PC and the 

area is the same.  The case PB is between 

PA and PC is also similar. 
 
For the case P is inside the circumcircle 

of ABC∆ , the area of the triangle with 

sidelengths PA, PB, PC can similarly 

computed to be 4/)(3 22 POR − .  

Therefore, the locus of P is the circle(s) 

with center O and radius 3/42 cR ± , 

where c is the constant area. 
 
Comments:  The proposer's solution only 

differed from the above solution in the 

details of computing areas. 
 

 
 
Olympiad Corner 

(continued from page 1) 
 

Problem 4.  (cont’d) 

Determine all values of k for which 2000 

is a term of the sequence. 
 

Problem 5.  The seven dwarfs decide to 

form four teams to compete in the 

Millennium Quiz.  Of course, the sizes of 

the teams will not all be equal.  For 

instance, one team might consist of Doc 

alone, one of Dopey alone, one of 

Sleepy, Happy and Grumpy as a trio, and 

one of Bashful and Sneezy as a pair.  In 

how many ways can the four teams be 

made up?  (The order of the teams or of 

the dwarfs within the teams does not 

matter, but each dwarf must be in exactly 

one of the teams.) 

Suppose Snow White agreed to take part 

as well.  In how many ways could the four 

teams then be formed? 
 

 
 
Majorization Inequality 

(continued from page 2) 
 
For the case n > 2, let ia  = ++L1/(xxi  

)nx  for i = 1, …, n, then naa ++L1  = 1.  

In terms of ia 's, the inequality to be 

proved becomes 

( ) Caaaa ji
nji

ji ≤+∑
≤<≤

22

1

. 

The left side can be expanded and 

regrouped to give 

( )∑
=

+− ++++
n

i
niii aaaaa

1
111

3
LL  

).1()1( 3
1

3
1 nn aaaa −++−= L  

Now f(x) = 433 )1( xxxx −=−  = is 

strictly convex on 








2

1
 ,0  because the 

second derivative is positive on 








2

1
 ,0 .  

Since the inequality is symmetric in the 

ia 's, we may assume naaa ≥≥≥ L21 . 

If 
2

1
1 ≤a , then since 

( )naaa  ..., , ,0 ..., ,0 ,
2

1
 ,

2

1
21f








, 

by the majorization inequality, 

 )()()( 21 nafafaf +++ L  

8

1
)0()0(

2

1

2

1
=+++








+







≤ ffff L . 

If 
2

1
1 >a , then naaa  ..., , ,1 21−  are in [0, 

2

1
].  Since 

) ..., ,()0 ..., ,0 ,1( 21 naaa f− , 

by the majorization inequality and case n 

= 2, we have 

  1(af ) + 2(af ) + )( naf+L  

)0()0()1()( 11 ffafaf +++−+≤ L  

   =
8

1
)1()( 11 ≤−+ afaf . 

Equality holds if and only if two of the 

variables are equal and the other 2−n  

variables all equal 0. 
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